Windshield Wiper Installation on Open Cars

Several changes have been made in the electric windshield wiper for open cars. These changes slightly alter the installation instructions contained in the May Bulletin.

When installing the present electric wiper on open cars, it will be necessary to drill a 1/4-inch hole on the inside of the windshield support 3 1/2 inches below the centerline of the windshield wing nut. This 3 1/2-inch dimension must be observed to avoid conflicting with the installation of windshield wings.

With the exception of these changes the windshield wiper instructions contained in the May Bulletin apply to the present wiper.

Breaker Arm Assembly

((588))

As an added protection against car theft, the distributor breaker arm spring is now riveted

around the breaker arm spring stud (see A, Fig. 588), the thickness of the head of the stud increased and the stud case hardened.

These changes add two more parts to the breaker arm assembly, namely, breaker arm spring A-12169 and breaker arm spring stud A-12157.

To install the new breaker arm assembly, it is necessary to remove the breaker plate assembly. This, of course, will necessitate retiming the ignition.

Installing Piston Pins

((618))

Under no circumstances should a hammer be used on the piston pin pilot and driver when installing a piston pin. Immersing the piston in boiling water for a minute or two will expand the piston pin hole sufficiently to permit easy installation.

To correctly install pin first insert the piston pin pilot and driver through piston pin hole as shown in Fig. 618, then place pin over end of pilot (see Fig. 619) and push piston pin into place.

((619))

Engine Cylinder Head Nuts

A blown out cylinder head gasket can invariably be traced to failure to securely tighten cylinder head nuts, particularly during the first 50 miles a new car is driven. During this period the new cylinder head gasket becomes slightly compressed, as a result all of the cylinder head nuts can be taken up several times until the gasket obtains a permanent set. This also applies when a new cylinder head gasket is installed in an old car.

After completing a drive-away trip, instruct your mechanics to go over all of the cylinder head nuts and see that they are securely tightened. An additional check should also be made before delivering the new car to the owner, and again when the car is brought in for inspection.

The nuts should be tightened with the engine thoroughly warmed up. When tighten- ing the nuts it is of course understood that excessive force should not be applied, as there would be a possibility of damaging either a stud or nut.

Tire Service

Tire Service

Are you stressing to owners the importance of regularly checking tire pressures and keep- ing all tires inflated to 35 pounds?

Recently a representative of one of the tire companies checked the inflation pressures on more than 400 tires on Ford owners’ cars and found pressures varying all the way from 13 to 55 pounds.

Does this condition exist among your customers?

Tires must be properly mounted

((620))

Here are two examples of incorrect tire mounting. Fig. 620 shows what happens to an inner tube when a tire is inflated before it is properly centered on the rim.

In this case after mounting the tire, the mechanic failed to work the casing back and forth until the beads on the tire were seated on the rim bead seats, indicated by the red line on the casing showing an even distance from the rim all around on both sides. The result was that the tube was inflated while the beads on the tire were still in the rim well and as the air pressure was applied the tube attempted to push the tire out of the well with the result the tube was pinched beneath the bead, causing it to take a permanent set as shown in Fig. 620. This condition can be eliminated by first applying one or two pounds of air or just enough to. round out the tube, then shaking the casing to make sure it is raised out of the well, then inflating to recommended pressure.

Fig. 621 shows the result of carelessly mounting a tire on the rim with the valve stem cocked to one side instead of extending straight out from the tube.

When a tire is inflated with the valve stem cocked to one side, the bridge washer at the bottom of the valve stem cuts into the tube (see Fig. 621) and as the pressure increases, while the tire is being inflated, the washer either cuts through the tube or badly weakens it.

All tires used as original equipment on the Model ” A ” have a soft gum feather edge placed on the casing bead. Under no circumstances must this soft edge be removed. If it is removed chafing of the tube will result.

((621))

Battery Bracket

Fig. 589 shows the new design battery bracket. The old design bracket will not be carried for service. Should an occasion arise where it is necessary to replace an old style bracket with the new design the new bracket can be easily installed as follows:

Drill one 25/64 inch hole in center cross

member at point shown in Fig. 590. Next bolt the new support to the center cross member and the frame side member. The rear stud in the battery bracket is inserted through the 25/64 inch drilled hole in the center cross member and fastened in place with washer A-22245 and nut A-21741. The opposite side of the battery bracket is bolted to the frame (see Fig. 589), using bolt A-20705, lockwasher A-22217 and nut A-21702. The bolt is inserted through the forward one of the two drilled holes in the frame. See Fig. 590.

((590))

Removing Rear Hub and Brake Drum Assembly

Before installing puller to remove rear hub and brake drum assembly, remove axle shaft nut, and screw it onto the axle shaft with the castles on the nut pointing inward (see Fig. 591). The nut should be screwed down until it is flush with end of shaft, then apply puller in the regular way. Placing nut on shaft prevents mushrooming or swelling end of shaft when pulling off drum.

((591))

Installing Drag Link

To provide additional clearance between drag link and front brake shaft housing, the end of the drag link, which was formerly assembled to the rear, is now assembled to the front. This necessitated relocating the lubricator fittings so they would be easily accessible when the position of the drag link was reversed.

When installing a new drag link, note that on one end of the drag link the opening for the ball arm is approximately 3/8 inch from the end of the drag link (this end must be assembled to the spindle arm). On the opposite end the opening is approximately 1 3/8” inches from the end of the link (this end is assembled to the steering gear arm). See Fig. 592.

((592))

Model A Engine Lubrication

((593))

For correct engine lubrication a high grade, well refined oil is absolutely essential.

As a guide to the proper viscosity or body of oil for summer and winter conditions, which vary for different territories, the lubrication charts of reputable oil companies should be consulted. In general, an oil having the body of S. A. E. viscosity No. 40 corresponds approximately to our M-515-A and B and is accordingly recommended for summer use.

For winter use, S. A. E. oil specifications No. 20 can be used. It is necessary, however, for winter use, that such an oil have a low cold set.

A large number of oil companies are stamping containers and indicate on their charts S. A. E. numbers. This practice is desirable because of the fact that it assists the owner to obtain the proper oil for his engine.

Shock Absorber Adjustment

Cold weather adjustment for cars equipped with shock absorbers having square end needle valve is made as follows:

Rear shock absorbers—Screw needle valve in until it seats, then back valve off 1/2 to 5/8 of a turn.

Front shock absorbers—screw needle valve in until it seats, then back valve off 3/8 of a turn.

Shock absorbers provided with needle valve pointers—set rears at 3 to 4, fronts 2 to 3.

Check level of glycerine in reservoir. Every 5000 miles the level of the glycerine in the reservoir should be brought up to the filler plug opening.

Battery:

See that the electrolyte in the battery is at the proper level and all connections are clean and tight.

Engine Oil:

See that the oil pan is filled with the proper grade of winter engine oil (see page 291, October Bulletin).

Radiator:

See that hose connections are tight and in sections where freezing weather prevails that the radiator is filled with anti-freeze solution.

New Flexible Front End Support

new Flexible Front End Support

One of the problems which has constantly confronted automobile engineers is to prevent Engine vibration being transmitted to the chassis. The latest Model ” A ” improvement along this line is the introduction of a flexible front end support for the engine. The upper half of this support is bolted to the cylinder front cover. The lower half of the support is sup- ported on the cross member by flexible springs (see Fig. 597). These springs allow the engine a free vertical motion, yet hold it within definite limits. The result is an engine support that is simple in design and operation and frees the car from unpleasant vibration periods.

The support is standard on all new cars and trucks and can be easily installed on cars not so equipped by proceeding as follows:

The list price of the support complete with parts is $1.65. The labor charge to the customer for installation must not exceed $6.00.

Instructions for Installing:

  1. Drain water from radiator
  2. Remove hood.
  3. Take out mat and floor boards.
  4. Disconnect either the battery cable or ground connector from battery.
  5. Remove the two accelerator bracket cap screws.
  6. Unhook accelerator to carburetor rod, also throttle control rod and lift off accelerator bracket.
  7. Remove the two bolts from both engine rear supports
  8. Remove both engine pans
  9. Disconnect starter switch push rod and slide rod back out of way.
  10. Remove front splash shield.
  11. Disconnect cut-out, horn and head- lamp wires and remove radiator.
  12. Disconnect carburetor adjusting rod from carburetor and loosen the two exhaust pipe bolts.
  13. Remove the two cylinder front cover screws shown in Fig. 598.
  14. Remove one of the front spring clips, loosen the other and remove starting crank bearing.
  15. Screw off starting crank ratchet nut.
  16. Jack up engine sufficiently high to permit withdrawing fan pulley over top of front cross member (To prevent damaging oil pan, place a small board between top of jack and oil pan.)
  17. Saw off cross member at dotted line shown in Fig. 598.
  18. Enlarge the 1/2 inch hole in front cross member to 3/4 inch Important: Before enlarging the 1/2 inch hole make certain that the center of the hole is exactly 1 inch ahead of the rear flange of the front cross member (see Fig. 599) if not, hole must be filed to suit. After enlarging the hole to 3/4 inch be sure to remove all burrs and cuttings and thoroughly clean out cross member. This is important.
  19. Slip leather washer A-6033 over threaded end of support stud, sliding washer back on stud until flat side of washer rests against flat side of support.
  20. Place a little grease on the bottom of spring A-6031 and position it in bottom of cross member, lining up hole in spring with hole in cross member. The side of the spring which has the raised spring retainers is placed next to cylinder front cover.
  21. Bolt support to cylinder front cover by means of two lock washers A-22330 and two cap screws A-21240.
  22. Replace fan pulley.
  23. Lower engine sufficiently so that springs A-6032 can be slipped over the two bosses on the support and the raised retainers on the flat spring.
  24. Next lower front end of engine down as far as it will go, making sure that neck of leather washer A-6033 lines up with hole in flat spring.
  25. Slip brass bushing A-6034 over threaded end of motor support stud which extends through cross member, making sure that neck of bushing enters hole in cross member.
  26. Place spring A-6035 over stud, then screw on castle nut, running the nut down sufficiently far to permit locking it in place with cotter key.
  27. Next replace the four rear motor supprt screws. If it is necessary to jack up the engine in order to line up the cap screw holes in the rear engine supports, apply the jack under the front radius rod ball cap. After installing the rear motor support screws check the new motor support to make certain that the parts are in exact relationship to each other as shown in Fig 597. This is important. If the leather washer A-6033 is in contact with flat spring A-6031, or if coil springs are closed, one or both of these conditions will absolutely defeat the action of the support.
  28. After tightening the two exhaust pipe clamp bolts, the relation of the front motor support parts should again be checked. This completes the installation of the support and the reassembling of the major parts. The balance of the job can now be built up in the regular way.
  29. Before installing the engine pans, bend up the end of both pans as shown in Fig. 600, making sure that the edge of the pan which has been bent up clears front cross member.
  30. After building up the job make certain there is at least YQ inch clearance between the arm on the universal joint housing cap and the center cross member (see Fig. 601). If there is not at least 1/16 inch clearance, it will be necessary to remove the cap and grind off a little stock from the arm until required clearance is obtained.

((598))

((599))

((600))

((601))

remarks

If when the rear motor support arms are bolted to the engine the front support does not have from 1/64 to 3/64 clearance between leather washer and top of flat spring, loosen the four bolts holding rear support bracket to motor, also loosen the six small bolts which clamp rear support brackets to frame. Next remove nut and spring and washer on lower end of support stud and jack up front end of motor approximately 3/8 inch. With the front end of the motor raised 3/8 inch, tighten the six small bolts which clamp rear support brackets to frame, then tighten the four bolts holding rear support brackets to engine, next lower front end of engine and reassemble spring, washer and nut. This should provide proper clearance between leather washer and flat spring.

If the lower coil spring is closed and there is excessive clearance between leather washer and top of flat spring, repeat the above operation with the exception that the rear end of the engine is jacked up 3/8 of an inch instead of the front end.

Single Plate Clutch

Single Plate Clutch

The new single plate clutch now standard for Model “A”cars and “AA”trucks is composed of two major units, namely, the cover plate assembly A-7563 and the clutch disc assembly A-7550 or AA-7550.

The cover plate assembly consists of a cast iron outer driving plate and a stamped cover plate in which are mounted twelve pressure springs and six release levers. These springs are in direct action against the pressure plate and automatically compensate for all wear of the friction facings. This feature eliminates any necessity of adjusting the release levers.

The driven member or clutch disc assembly is composed of a flat steel disc and two friction facings. The facings are riveted to both sides of the driven disc. The disc is slightly dished in the form of a cone. With this construction the outer and inner edges of the clutch disc facing, start to engage first and as the clutch engages when the pedal is allowed to come back the spring pressure in the clutch flattens out the clutch disc and the entire lining surface picks up the load evenly. This feature assures exceptionally smooth clutch engagement.

Moulded friction facings are used because of their long wearing qualities. They also successfully withstand higher temperatures as they contain no cotton element.

Repair parts and exchanges

The only repair parts dealers will stock are the clutch disc assemblies A and AA-7550, clutch disc facings A-7549B and AA-7549, facing rivets A-22993 and pressure plate and cover assembly A-7563.

Should any part of.the pressure plate and cover assembly fail, return the entire assembly to the Branch, and a new assembly will be furnished at an exchange price of $3.25 net. The price to the customer will be $4.25.

Under no circumstances will dealers attempt to replace any parts in the pressure plate and cover assembly, as the lever height when under spring pressure must be set with specially designed fixtures.

The following is a list of single plate clutch and related parts which will be supplied through service:

((Table pg 296))

Service Suggestions

((602))

The pressure springs automatically compensate for all wear of the friction facings. Readjustment of the release levers must never be made under any circumstances.

The only adjustment for clutch wear is made at the bottom of the clutch pedal. The pedal must have 1 inch free play or movement before it starts to disengage the clutch.

Grease on friction facings will cause the clutch to chatter during engagement or sometimes slip at high speeds. The remedy is to remove the clutch and install a new set of clutch discs facings.

Occasionally, due to an improperly adjusted clutch pedal o r continuous abusive slippage, the clutch pressure plate may develop small radial heat cracks. If the pressure plate is not grooved, and these cracks are not large, simply polish the face and replace the unit. These heat checks will cause no harm.

It is not necessary to return clutch driven members to the factory for replacement of worn friction facings, as this operation may be done in your own shop. Before facings are replaced, make certain that the driven member otherwise is in good condition.

The saw steel driven disc is slightly dished to provide smooth clutch engagement. When new friction facings are installed be certain that the rivets are drawn down tightly.

Drivers should b e instructed that riding the clutch pedal is a bad habit, as it causes the clutch to slip. The foot should be placed upon the clutch pedal for a definite purpose only—that is to change gears.